
A Space-Efficient Indexing Algorithm

for Boolean Query Processing

Jianbin Qin1, Chuan Xiao2, Wei Wang1, and Xuemin Lin1

1 The University of New South Wales, Australia
2 Nagoya University, Japan

Abstract. Inverted indexes are the fundamental index for information
retrieval systems. Due to the correlation between terms, inverted lists in
the index may have substantial overlap and hence redundancy. In this
paper, we propose a new approach that reduces the size of inverted lists
while retaining time-efficiency. Our solution is based on merging inverted
lists that bear high overlap to each other and manage their content in the
resulting condensed index. An efficient algorithm is designed to discover
heavily-overlapped inverted lists and construct the condensed index for a
given dataset. We demonstrate that our algorithm delivers considerable
space saving while incurring little query performance overhead.

1 Introduction

Inverted index is a fundamental indexing data structure for information retrieval
and has found its way into database systems. It associates tokens with their cor-
responding inverted lists; each list contains a sorted array of document identifiers
in which the token appears. The primary advantage of the inverted index is that
it supports boolean queries efficiently. For example, to retrieve documents con-
taining both keywords x and y, we can intersect the inverted lists of x and y.

One issue with the traditional inverted index is its size. Currently, various
compression techniques are used to reduce the size of each individual lists. How-
ever, little effort is paid to account for the redundancy among the inverted lists.
Due to the existence of frequently co-occurring tokens (e.g., phrases), there will
be high redundancy due to large overlaps.

In this paper, we propose a novel way to arrange the inverted index physically
to achieve reducing the size of the inverted index by exploiting overlaps among in-
verted lists of groups of tokens.We name the resulting inverted index the condensed
inverted index. The idea is to form groups of tokens and then explicitly represent
the intersections of their corresponding inverted lists such that every document
identifier only occurs at most once within the group. This not only reduces the
overall size of the index but also accelerates certain queries. We present the query
processing algorithm for boolean queries on the condensed index (Section 2).

One technical challenge is how to construct an optimal condensed index. We
show that finding the minimum-sized condensed index is a very hard problem,
and even a greedy algorithm is typically too expensive to be practical. We pro-
pose non-trivial optimizations to the greedy algorithm (Section 3).

X.S. Wang et al. (Eds.): WISE 2012, LNCS 7651, pp. 638–644, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Space-Efficient Indexing Algorithm for Boolean Query Processing 639

We conducted experiments with several real-world datasets. It demonstrates
the space and time trade-offs of the condensed index and the efficiency of the
optimized index construction algorithm (Section 4).

Preliminaries. Let a record r be a set of tokens taken from a finite universe
U = {w1, w2, . . . , w|U| }, and R be a collection of records. A boolean query q is a
sequence of tokens concatenated by boolean operators, AND, OR, and NOT. The
task is to find all records r in R such that r satisfies the query q. The number
of tokens in r is denoted as its size, or |r|.

An efficient way to answer boolean queries is to use inverted indexes [1]. An
inverted list, lw, is a data structure that maps the token w to a sorted list of
record ids such that w is contained by the corresponding records. lw[i] denotes
the i-th entry in the inverted list of token w.

After the inverted lists for all tokens in the record set are built, we can scan
each token in the query q, probe the indexes using every token in x, and obtain
a set of posting lists. Merging the posting lists using the boolean operators q will
give us the final answer to the query.

2 A New Index Structure for Boolean Queries

We design a new condensed index to exploit the correlation of multiple inverted
lists.

We illustrate the idea in Figure 1(b). Consider merging two lists lA and lB. It
will produce a new list l

̂AB
. The two tokens A and B will share the new list l

̂AB
,

and it will be traversed when either A or B appears in the query. This reduces
the index size and the number of entries to be accessed when the query contains
both A and B. However, it will probe more entries and introduce false positives
when the query contains only A (or B). To address these issues, we divided the
merged lists into blocks. Each block indexes a combination of the tokens in this
list. For example, the first block maps to the records that contain only A, i.e., p
and r. The second block maps to the records that contain only B, and the third
block maps to the records that contain both A and B.

Figure 1 shows the structure of the merged inverted lists. We call the lists
formed by merging groups, and assign a group id to each of them. We keep the
token-group table that maps token id to group id, so as to locate the group that
stores the token’s inverted list. At the stage of index probing, the tokens in the
query are first collected according to their groups. For each of these groups, we
probe the blocks that contain the (combination of) tokens. To handle the boolean
operators within a group, we need to probe the following blocks: (1) AND The
blocks that index all the tokens (of this group) in the query. (2) OR The blocks
the index any of the tokens (of this group) in the query. Then we take the union
of the results. Note that we do not need to remove duplicates when processing
union within a group since the blocks are disjoint in indexed entries.

In the interest of space, we refer readers to [2] for the detailed query processing
algorithm.

640 J. Qin et al.

BA

p
r

q
v
z

s

(a) Combinding Two Inverted
Lists

group 1

A B

tok ens
mapped

list entries

A p, r

B s

A B q, v , z

group 2

CDE

tok ens
mapped

list entries

C p, q

D r

CD s

E t

CE u, v , w

DE x

CDE y, z

tok en id group id

A 1

B 1

C 2

D 2

E 2

 merged
 inv erted
 lists

tok en-group table

(b) Data Structure of Condensed Indexes

Fig. 1. Condensed Indexes

3 Choosing Inverted Lists to Merge

The condensed index structure can be implemented using a small amount of
application-level code. Both space and time efficiency of the index structure
depends on which of lists are chosen to be merged, yet this is not an easy task.
In this section, we provide an efficient greedy algorithm that chooses lists to
merge considering both space and time factors.

3.1 Greedy Algorithm

We start with a basic greedy algorithm that repeatedly merges the two lists that
yield the most space saving.

Algorithm 1 describes the algorithm. Suppose the input lists L have been
sorted by increasing token id. We initialize the groups by treating each inverted
list as a single group (Line 1), and assign a group id according to their token
id. Then we search for the pair of lists with the largest overlap in each iteration
(Line 2 and 6), merge them into one group (Line 4 and 5), and assign a new
group id, which is required to be greater than all of the current ones. To strike
a balance between space saving and time efficiency, we use a parameter M to
limit the maximum size of a group. The resulting group serves as a new inverted
list to replace the two merged ones. The algorithm repeats until no pair of lists
can be found to improve the overall space saving.

Algorithm 2 captures the process searching for the pair of lists with the largest
overlap. We scan every inverted list, denoted li, searching for the list that has
the most overlap with li (Line 2). We call this list the partner of li if we can
safely merge the two lists without exceeding the size limit M .1 We compute the
overlap between each li and its partner, and arrange them in a max-heap E. The
pair of lists at the top of E is the pair that yields the largest overlap.

In order to find the partner of each inverted list li, we use an array of counters
to calculate the overlap between li and the other lists in L. The records indexed

1 Note that the definition of partner is not symmetric.

A Space-Efficient Indexing Algorithm for Boolean Query Processing 641

Algorithm 1: MergeLists (R,L)

1 E ← ∅; gi ← 1(1 ≤ i ≤ |L|) ; /* E is a max-heap */

2 (lx, ly , score)← SearchListPair (R,L,E);
3 while lx �= ∅ do
4 gnew ← gx + gy ; /* increase group size */

5 lnew ← lx ∪ ly , L← L \ {lx, ly} ∪ {lnew};
6 (lx, ly, score)← SearchListPair (R,L, E);

7 return L

Algorithm 2: SearchListPair (R,L,E)

1 for i = 1 to |L| do
2 (li, lj , score)← SearchPartner (li);
3 E.push(li, lj , score);

4 (lx, ly , score)← E.pop();
5 return (lx, ly, score)

by li is sequentially scanned. For each token w in each record, we increase the
counter corresponding to lw by one. The inverted list with the greatest value
among the counters is reported as li’s partner. The pseudo-code is given in
Algorithm 3.

Algorithm 3. SearchPartner (lx)

1 Omax ← 0, lmax ← ∅;
2 O ← empty map from group id to int;
3 A← empty map from group id to record id;
4 for each r ∈ lx do
5 for each w ∈ r do
6 y ← w’s group id;
7 if gx + gy ≤M and A[y] �= r then
8 O[y]← O[y] + 1, A[y] = r;
9 if O[y] > Omax then

10 Omax ← O[y], lmax ← ly;

11 return (lx, lmax, Omax)

3.2 Further Optimizations

The above greedy algorithm returns the condensed inverted lists. An important
issue is that it has to recompute the partner of each list once two lists lx and ly
are merged. These repeated computations incur significant overhead, and render
the algorithm unable to output results for large-scale datasets in reasonable time.
Nevertheless, we can avoid such computation by enforcing a constraint that a
list’s group id should always be greater than its partner’s group id. We formally
state the principle in the lemma below.

642 J. Qin et al.

Algorithm 4. OptimizedSearchListPair (R,L,E)

1 if this function is called for the first time then
2 for i = 1 to |L| do
3 (li, lj , score)← SearchPartner (li);
4 E.push(li, lj , score);

5 else
6 (lnew , lj , score)← SearchPartner (lnew);
7 E.push(lnew , lj , score);

8 (lx, ly , score)← E.pop();
9 while either lx or ly has been merged do

10 if lx has not been merged then
11 (lx, lz, score)← SearchPartner (lx) ; /* search x’s new partner */

12 E.push(lx, lz, score);

13 (lx, ly, score)← E.pop();

14 return (lx, ly, score)

Lemma 1. Let the partner of a list li be the list whose (1) group id is smaller
than the group id of li; (2) group size will not exceed M if it is merged with
li; (3) overlap with li is the largest among all the lists that satisfy the first two
conditions. If a list changes its partner after merging lx and ly, then the partner
of this list must be either lx or ly before the merging.

Algorithm 5. OptimizedSearchPartner (lx)

1 Omax ← 0; lmax ← ∅;
2 O ← empty map from group id to int;
3 A← empty map from group id to record id;
4 if lx is the new list formed in the previous iteration then
5 (Omax, lmax)← GetOmaxForNewList (lx);
6 for i = 1 to |lx| −Omax do
7 r ← lx[i];
8 for each w ∈ r do
9 y ← w’ group id;

10 if y < x and gx + gy ≤M and A[y] �= r then
11 O[y]← O[y] + 1, A[y] = r;
12 if O[y] > Omax then
13 Omax ← O[y], lmax ← ly;

14 for each y such that O[y] > 0 do
15 O[y]← |lx ∩ ly| ; /* evaluate exact overlap */

16 if O[y] > Omax then
17 Omax ← O[y], lmax ← ly;

18 return (lx, lmax, Omax)

A Space-Efficient Indexing Algorithm for Boolean Query Processing 643

This principle enables us to avoid committing the costly scanning over the set of
lists L. Instead, only the lists whose partners are lx or ly need to be assigned with
new partners. Additionally, we perform a lazy update to postpone the searching
for such lists’ partners. Only if these lists are popped from the max-heap E, we
search for new partners for them. The merging algorithm will benefit since these
lists may have been merged and discarded from further consideration before we
are forced to seek new partners. We give the pseudo-code for the above method
in Algorithm 4, and replace Algorithm 2 with it.

Algorithm 6. GetOmaxForNewList (lx)

1 (lu, lv)← the two lists that were merged to form lx;
2 if u < v then w← u; else w← v;
3 z ← w’s partner;
4 if z has not been merged and gz + gx ≤M then
5 Omax ← |lw ∩ lz|, lmax ← z;
6 else
7 Omax ← 0, lmax ← ∅;
8 return (Omax, lmax)

Another important optimization is to speed up the count algorithm we use in
Algorithm 3. Since we are looking for the partner that has most overlap with lx,
a filtering condition can be developed using the current maximum overlap Omax.
Considering the following prefix filtering principle.

Lemma 2 (Prefix Filtering Principle). Consider an ordering O of the token
universe U and a set of records, each sorted by O. Let the p-prefix of a record x
be the first p tokens of x. If |x ∩ y| ≥ α, then the (|x| − α + 1)-prefix of x and
the (|y| − α+ 1)-prefix of y must share at least one token.

If there exist ly such that |lx ∩ ly| > Omax, then ly must share at least one
token with the (|lx| −Omax)-prefix of lx. Therefore, only the first (|lx| −Omax)
entries in lx need to be probed in order to generate the candidate lists that
have potential to become lx’s partner. This filtering condition is tightened as
Omax increases. Finally, the candidate lists are verified for the exact overlap.
The improved algorithm is captured in Algorithm 5, and is used to replace the
original partner searching algorithm in Algorithm 3. In addition, we can infer
an initial lower bound of Omax before partner search, given that lx is the list
formed by merging two lists during previous iteration, supposing they are lu and
lv, and u < v. Since we have obtained the overlap between lu and its partner
li, it is guaranteed the overlap between lx and li is no less than this value. This
is because |li ∩ lx| = |li ∩ (lu ∪ lv)| ≥ |li ∩ lu|. The pseudo-code is given in
Algorithm 6, and invoked in Line 5 of Algorithm 5.

644 J. Qin et al.

4 Experiments

In the interest of space, we briefly present our experimental results in this section.
Please refer to [2] for the full version of experimental evaluation.

Three publicly available datasets were used in our experiments: DBLP bibliog-
raphy records, TREC-9 Filtering Track Collections, and Enron email collection.
We generated queries for each dataset by sampling records from the dataset and
randomly selecting a number of consecutive tokens containing no stop words.

We evaluated the optimization methods proposed in Section 3. On DBLP, the
lazy update technique exhibits a speed-up up to 9.3x over the basic greedy list
merging algorithm with the constraint exploiting Lemma 1. Further applying
prefix filtering principle achieves an additional speed-up of 2.6x, and runs in 10
to 20 seconds with varying maximum group size.

We compared the condensed index sizes with the original index sizes. The
total index sizes decrease as the maximum group size M grows, bottoms at 6
or 7, and then rebounds. The overall space savings against the original inverted
index are 16.4% on DBLP, 26.8% on TREC, and 39.2% on ENRON.

We evaluated the query processing time with varying numbers of tokens in a
query. The best choice of M increases when more tokens are introduced. M = 2
yields the best runtime performance when a query contains two or three tokens.

5 Conclusion

We propose a novel inverted index structure to support boolean queries effi-
ciently. By exploiting the overlaps among inverted lists of groups of tokens, the
condensed structure is able to represent the intersections of their corresponding
inverted lists, so that the redundancy among the inverted lists of frequently co-
occurring tokens can be avoided. We design an efficient greedy algorithm to find
a good condensed index. Experimental results show that our condensed index
structure occupies less space yet achieves accepatable runtime performance.

References

1. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval, 1st edn. Addison-
Wesley (May 1999)

2. Qin, J., Xiao, C., Wang, W., Lin, X.: Condensed inverted index: A space-efficient
index for boolean queries. Technical report, University of New South Wales (2012)

	A Space-Efficient Indexing Algorithmfor Boolean Query Processing
	Introduction
	A New Index Structure for Boolean Queries
	Choosing Inverted Lists to Merge
	Greedy Algorithm
	Further Optimizations

	Experiments
	Conclusion
	References

