
HmSearch: An Efficient Hamming Distance
Query Processing Algorithm

Xiaoyang Zhang† Jianbin Qin† ∗ Wei Wang† Yifang Sun† Jiaheng Lu‡

†University of New South Wales, Australia
{xyzhang, jqin, weiw, yifangs}@cse.unsw.edu.au

‡ Renmin University of China, China

jiahenglu@ruc.edu.cn

ABSTRACT
Hamming distance measures the number of dimensions where
two vectors have different values. In applications such as
pattern recognition, information retrieval, and databases,
we often need to efficiently process Hamming distance query,
which retrieves vectors in a database that have no more than
k Hamming distance from a given query vector. Existing
work on efficient Hamming distance query processing has
some of the following limitations, such as only applicable
to tiny error threshold values, unable to deal with vectors
where the value domain is large, or unable to attain robust
performance in the presence of data skew.

In this paper, we propose HmSearch, an efficient query pro-
cessing method for Hamming distance queries that addresses
the above-mentioned limitations. Our method is based on
improved enumeration-based signatures, enhanced filtering,
and the hierarchical binary filtering-and-verification. We
also design an effective dimension rearrangement method to
deal with data skew. Extensive experimental results demon-
strate that our methods outperform state-of-the-art meth-
ods by up to two orders of magnitude.

1. INTRODUCTION
In this paper, we study the problem of efficiently processing
Hamming distance queries with a fixed threshold k.

Hamming distance measures the number of dimensions where
two vectors have different values. In many applications, we
often need to efficient process the Hamming distance query,
which retrieves vectors in a database that have Hamming
distance no more than k from a given query vector. For
example,

• In order to identify near-duplicate Web pages, Google uses
SimHash to obtain a 64-dimension vector for each web
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page. Two web pages are considered as near-duplicate if
their vectors are within Hamming distance 3 [16].

• Similarity search is widely used in Chemical informatics
to search and classify known chemicals, virtually screen of
chemicals for drug discovery, and predict and optimize the
properties of existing active compounds [10, 20]. A fun-
damental query is to find all the molecules whose 881-bit
fingerprints have Tanimoto similarity no less than t to the
fingerprint of a query molecule. As will be shown in sec-
tion 2, this can be transformed into a Hamming distance
query.

• Locality sensitive hashing [12] is a widely used technique
to perform approximate similarity search with probabilis-
tic guarantees. Recently, C2LSH [11] is proposed to ad-
dress the issue of excessive index space required by tradi-
tional LSH method without affecting the theoretical guar-
antees. At the core of the method is a Hamming distance
query with a threshold k (computed from several parame-
ters) against vectors of the database objects generated by
N LSH functions.

While there are prior studies on efficient query processing
methods for Hamming distance search with a fixed thresh-
old k, they suffer from some of the following problems:

• Limited to tiny k values. Early solutions based on re-
duction to exact matching problems only work for a very
small k values [16, 24]. Recent proposals [14, 21] are able
to process slightly larger k thresholds, but are still fairly
limited as the performance deteriorates rapidly with the
increase of k due to lack of effective pruning.

• Unable to handle a large value domain. Most existing so-
lutions were designed for binary vectors (i.e., value domain
size is 2), and they incur huge space usage when the value
domain size is large, which is required by data generated
by MinHash [5, 25], or by kNN search [21, 11].

• Unable to handle skewed data. As we show in Section 5,
existing methods will all degenerate to essentially the brute-
force linear-scan method in the presence of data skew,
which is present in many datasets such as the chemical
fingerprints in PubChem.

In this paper, we propose HmSearch, an efficient query pro-
cessing method for Hamming distance queries that addresses
the above-mentioned limitations. Our method is based on
partitioning the dimensions into partitions such that the
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query results must have at least one partition whose Ham-
ming distance is no more than 1 with the corresponding
partitions of the query. We can then use either 1-deletion
variants or 1-variants to efficiently process the special 1-
Hamming distance query. We further strengthen the parti-
tioning method by requiring candidates to match more than
one variant-based signature under certain circumstances. We
also develop a hierarchical binary representation for the data,
which enables us to perform filtering and verification si-
multaneously with almost no additional cost. To deal with
data skew, we design an effective dimension rearrangement
method. Extensive experimental results demonstrate that
our methods outperform the state-of-the-art methods by up
to two orders of magnitude, especially for medium-valued k
and skewed datasets.

Our contributions can be summarized as follows:

• We propose a versatile method to process Hamming dis-
tance queries under a wide spectrum of settings including
error threshold k, and domain size of dimension values. It
is also robust against data skew thanks to the dimension
rearrangement technique.

• We compare the proposed method with state-of-the-art
methods in an extensive experimental study. The re-
sults demonstrate that our method can outperform ex-
isting ones by up to two orders of magnitude.

The rest of the paper is organized as follows. Section 2
defines the problem and introduces the preliminaries. Sec-
tion 3 introduces the variant-based signatures for Hamming
distance query with threshold 1. Section 4 presents our
HmSearch method with tighter pruning and a filtering-and-
verification procedure based on hierarchical binary repre-
sentation of the data. Section 5 presents our technique of
rearranging the dimensions to handle data skew. Experi-
mental results are presented in Section 6 followed by related
work in Section 7. Section 8 concludes the paper.

2. PRELIMINARIES
Problem Definition. Since Hamming distance is defined on
vectors of same number of dimensions, we consider all data
and query vectors having N dimensions in this paper. The
i-th dimension is denoted as Di. V [Di] represents the i-th
dimension value of a vector V . Without loss of generality,
we assume the domain of possible values for Di is the same
and is denoted as Σ.

Let ∆(x, y) = 0 if x = y and 1 otherwise. The Hamming
distance between two vectors S and T is defined as:

H(S, T ) =

N
∑

i=1

∆(S[i], T [i])

If we consider S as a yardstick, we can also say T hasH(S, T )
error(s) with respect to S.

Given a dataset V of vectors, a Hamming distance query of
a query vector Q and threshold k retrieves all vectors in the
dataset with Hamming distance to Q no more than k, or

{ vi ∈ V | H(vi, Q) ≤ k }

Such a query is also known as the k-query due to [17].

Table 1: Notations

Symbol Definition

N Dimensionality of all the vectors
k Hamming distance threshold
n Number of vectors in the database
Σ The domain for all values of the vector
# Deletion marker
[11, 22] We use dimension ID in the subscript to

distinguish values

vi The i-th partition of vector v
Isig Postings list of signature sig
x(i) The i-th bit (from left to right) of the binary

representation of an integer x (e.g., 5(3) is 1)

Relationship with Tanimoto Similarity. In Chemical In-
formatics, molecules can be represented by binary vectors,
which are called fingerprints [10]. One of the most popular
measures to measure the similarity between fingerprints is
the Tanimoto similarity [19]. Let S and T be binary vec-

tors. set(S) is the set representation of S; i.e., set(S)
def
=

{Di | V [Di] 6= 0 }. The Tanimoto similarity, or essentially
the Jaccard similarity, is defined as:

T (S, T ) =
|set(S) ∩ set(T )|

|set(S) ∪ set(T )|

We can derive the following equivalence between a constraint
based on the Tanimoto similarity and that based on the
Hamming distance:

T (Q,S) ≥ t ⇐⇒ H(Q,S) ≤
1− t

1 + t
· (|set(S)|+ |set(Q)|)

If we perform a search using a Tanimoto similarity thresh-
old of t, we can derive the threshold of a Hamming dis-
tance query with threshold kQ = 1−t

t
· |set(Q)|. This is

because for any result S satisfying T (Q,S) ≥ t, we know
that |set(S)| ∈ [t · |set(Q)|, |set(Q)|/t].

Notations. We list notations used in the paper in Table 1.

3. VARIANT-BASED SIGNATURES
In this section, we first introduce the definitions of 1-variant
and 1-deletion-variant, then illustrate how to use these two
variants to answer the Hamming distance query for k = 1
(also called 1-query), respectively. As we will see shortly in
Section 4.1, the general case Hamming distance search can
be reduced to this special case via partitioning.

3.1 Variants and Deletion Variants
The 1-variant of a vector v with respect to the value domain
Σ is any vector v′ in ΣN such that H(v, v′) ≤ 1. All the 1-
variants of v are denoted collectively as 1-Var-Set(v). v is
by definition its own 1-variant. The 1-variant can be com-
puted easily by substituting another value from Σ for v[i].
For any Vi ∈ V, the total number of 1-variants is therefore
1 + (|Σ| − 1)N .

Let Σ∗ = Σ ∪ {# }. The 1-deletion-variants of a vector
v are all the vectors obtained by substituting the deletion
marker # for v[i]. They are also collectively denoted as
1-Del-Var-Set(v). The total number of 1-deletion-variants is
N .

2



All the above different kinds of variants are referred to as
variants generically.

Example 1. Consider v = [11, 22, 13] and Σ = { 1, 2, 3 }.
All of its 1-variants are: [11, 22, 13], [21, 22, 13], [31, 22, 13],
[11, 12, 13], [11, 32, 13], [11, 22, 23], [11, 22, 33]. All of its 1-
deletion-variants are [#, 22, 13], [11,#, 13], [11, 22,#].

3.2 1-Query Processing using variants
3.2.1 1-Query Processing using 1-Variants
The following Lemma gives us a necessary and sufficient con-
dition for two vectors to be within Hamming distance of 1
based on 1-variants.

Lemma 1. Consider two vectors S and T . H(S, T ) ≤ 1
if and only if 1-Var-Set(S) ∩ {T } 6= ∅.

According to Lemma 1, we can use the following procedure
to answer 1-queries.

• Indexing. We generate all the 1-variants for every vector
in the database and index the variants using an inverted
index I.

• Query Processing. We directly look up the query in the
index. The returned results are exactly the query results.

The index space complexity of this method is O(|Σ| ·N ·n).
The query time complexity is O(1+ occ), where occ denotes
the number of query results.

3.2.2 1-Query Processing using 1-Deletion-Variants
Many of the existing Hamming distance query processing
methods assume a binary value domain, hence 1-variants
based methods are usually preferred to 1-deletion-variants
based methods (to be introduced below), as the former achieves
O(1) query time at the cost of just doubling the index space.
However, when |Σ| is large (e.g., Σ can be as large as 172 for
vectors generated by MinHash [5]), 1-variants-based meth-
ods will incur excessive amount of space usage (and building
time) for the index, which is not practical or competitive.
Instead, 1-deletion variants will be a good choice under such
circumstances.

The following Lemma gives us a necessary and sufficient con-
dition for two vectors to be within Hamming distance of 1
based on the intersection of their 1-deletion-variants sets.

Lemma 2. Consider two vectors S and T . H(S, T ) ≤ 1
if and only if 1-Del-Var-Set(S) ∩ 1-Del-Var-Set(T ) 6= ∅.

Note that even if S = T , they will have N common 1-
deletion-variants anyway.

According to Lemma 2, we can use the following procedure
to answer 1-queries.

• Indexing. We generate all the 1-deletion-variants for ev-
ery vector in the database and index the variants using
an inverted index I.

• Query Processing. We generate all the 1-deletion-variants
of the query and look them up in the index. The returned
results are merged and become the query results.

The index space complexity of this method is O(N ·n). The
query time complexity is O(N +N · occ).

Example 2. Continuing Example 1, we index all the 1-
deletion-variants of v (and other vectors in the database).
To process the query Q = [11, 22, 33], we first generate all
q’s 1-deletion-variants: [#, 22, 33], [11,#, 33], and [11, 22,#];
and we look them up in the inverted index and merge the re-
turned results. v will be found in the postings list of I[11,22,#].

4. THE HmSearch ALGORITHM
In this section, we first introduce how to reduce the general
Hamming distance problem to Hamming distance problem
with k = 1, so that the variants-based methods introduced
in Section 3 can be employed to answer each reduced query.
Then we present HmSearch, our proposed query processing
method with advanced threshold-based pruning and a tech-
nique to perform pruning and verification simultaneously.

4.1 Reduction of the General Hamming Dis-

tance Problem
The prevalent approach to answer Hamming distance query
is based on reducing the general problem into several in-
stances of Hamming distance queries with smaller threshold
values via partitioning.

First, we introduce a few concepts. We consider a parti-
tioning scheme that divides the N dimensions into κ par-
titions; each partition, denoted as pi, is a subset of dimen-
sions {Di,1, Di,2, . . . , Di,|pi| }. Given a vector v, its projec-
tion onto a partition, i.e., v[Di,1, . . . , Di,|pi|] forms a new

projected vector, denoted as projection vi.

Definition 1 (Match, Exact-Match and 1-Match).
Given two partitions pi and pj , if H(pi, pj) ≤ 1, they are
said to match each other. In addition, if H(pi, pj) = 0, they
are said to exact-match each other; if H(pi, pj) = 1, they
are said to 1-match each other.

Next, we present the following Lemma, which shows the
necessary condition for two vectors to be within Hamming
distance of k based on partitioning:

Lemma 3. Given two vectors S and T such that H(S, T ) ≤
k, if we divide the N dimensions (arbitrarily) into κ par-

titions, there are at least m = κ −
⌊

k
⌊k/κ⌋+1

⌋

partitions,

{ p1, p2, . . . , pm }, such that H(Si, T i) ≤ ⌊k/κ⌋, ∀1 ≤ i ≤ m.

Proof. Assume the contrary that at most m − 1 parti-
tions have at most ⌊k/κ⌋ errors. Then all the rest κ−m+1
partitions should have at least ⌊k/κ⌋ + 1 errors. Let β =
⌊k/κ⌋+ 1. Then the total amount of error is at least

β · (κ−m+ 1) = β ·

(⌊

k

β

⌋

+ 1

)

> k

which contradicts the condition that H(S, T ) ≤ k.
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This Lemma is a generalization of previous results (such as
Theorem 3.1 in [14] and [21]). As such, it has several in-
stantiations and each results in different algorithms. For
example, [16] chooses κ = k + 1, such that there must
m = 1 exact-matching partition, as ⌊k/(k + 1)⌋ = 0. [14]
essentially chooses κ = ⌊k/2⌋ + 1, hence entailing at least
m = 1 1-matching partition. [21] considers the general case
of choosing any κ, but fails to capitalize on cases where m
could be greater than 1.

In the following, we call these m partitions in Lemma 1
as matching partitions. When ⌊k/κ⌋ = 1, we also distin-
guish exact-match partitions and 1-match partitions, based
on whether the Hamming distance is 0 or 1.

Based on Lemma 3, the overall query processing method can
be captured in the following general framework:

• In the indexing phrase, each vector in the database is par-
titioned into κ partitions. Each partition is indexed in
such a way that it is possible to efficiently answer a Ham-
ming distance query with threshold ⌊k/κ⌋ for the projec-
tion of all vectors on this partition.

• In the query processing phase (See Algorithm 1), the query
vector is partitioned in the same way into κ partitions.
A special Hamming distance query with threshold k′ =
⌊k/κ⌋ is issued on each query partition to obtain a list
of candidate vectors whose corresponding partitions have
at most k′ Hamming distance from the query partition Qi

(Line 4). The returned results of these κ queries are added
to the CAND hash table, which count the number of times
a vector has been encountered. We perform the filtering
(See Algorithm 2), which essentially check the occurrence
number against m. If the vector passes the filtering, it
will then be verified (Line 7) against the entire query Q.

Algorithm 1: HammingQuery(Q, k, κ)

/* generate candidates */
1 CAND ← empty hash table that maps vector ID to an integer;
2 partition(Q, κ);

3 for each the i-th partition Qi of the query Q do

4 for each vector ID v ∈ reducedHammingQuery(Qi, ⌊k/κ⌋) do
5 CAND [v]← CAND [v] + 1;

// CAND [v] is initialized to 0 upon first visit

/* filtering and then verification */
6 for each candidate v ∈ CAND do

7 if filter(v, κ−
⌊

k
⌊k/κ⌋+1

⌋

) = false then

8 if verify(Q, v) then
9 output v;

Algorithm 2: filter(v,m)

Output : Returns true if v is filtered (i.e., disqualified)
1 if CAND [v] < m then
2 return true;

3 return false;

Remark 1. Note that, almost all existing methods apply
the even partition strategy. One way to use this strategy is to
partition the vectors into κ partitions evenly, such that each
partition has length either ⌊N/κ⌋ or ⌈N/κ⌉, where the last
N −⌊N/κ⌋ ·κ partitions having the longer length. However,

the evenly partitioning strategy has severe drawbacks in cer-
tain conditions, we will discuss uneven partition method in
section 5.

Remark 2. In addition to the indexing approach described
above, the other way is to replicate the vectors and keep
the vectors in each copy sorted. Binary search is used on
each copy to locate candidates. This method usually incurs
much overheads in both space and query time, and is mostly
adopted in distributed systems to achieve a high degree of
parallelism [16].

4.2 Partitioning
In our HmSearchmethod, based on the framework illustrated
above, we choose to partition the dimensions into κ =

⌊

k+3
2

⌋

partitions. According to Lemma 3, any query result vector
must have at least one matching partitions, i.e., having Ham-
ming distance at most 1. However, we show later that the
pruning condition can be strengthen, which will help to keep
the candidate size low when k increases.

Our enhanced filtering is based on observing the following
artifact of the partitioning scheme. Let k = 2c, where c is an
integer. Obviously, the partition number κ =

⌊

k+3
2

⌋

= c+1.
Based on Lemma 3, m = 1, which means a query result vec-
tor requires only one match. We observe that if first c + 1
errors are evenly distributed into c+ 1 partitions, there are
only c − 1 errors left to put into c + 1 partitions. Hence
in this case, two 1-matches exist. By carefully analyzing
this condition, we find that if there is no exact-match, there
must exist at least two 1-matches. Similar observation can
be found when k = 2c+1. Therefore, we establish the follow-
ing Lemma, which gives us a tighter condition for filtering.

Lemma 4 (Enhanced Filtering Condition). Cons-
ider processing the Hamming distance query for Q with thresh-
old k, and that the dimensions have been divided into κ =
⌊(k + 3)/2⌋ partitions. A query result S must satisfy the
following conditions:

• If k is an even number, S must have at least one exact-
matching partition, or two 1-matching partitions.

• If k is an odd number, S must have at least two match-
ing partitions, where at least one of the matches should be
an exact-match, or S must have at least three 1-matching
partitions.

Proof. When k is even, let k = 2c. Then κ = c + 1.
Assume the contrary, i.e., there is at most one 1-matching
partition. Then one partition has at least 1 error and the
rest c partitions have at least 2 errors each. The total num-
ber of errors is at least 2c+1 = k+1, which contradicts the
fact that it is a query result.

When k is odd, let k = 2c+1. Then κ = c+2. Assume the
contrary, i.e., there is at most two 1-matching partitions or
one exact-matching partition. Considering the former con-
dition, since both of the matching partitions have at least
1 error each and the rest c partitions have at least 2 errors
each. The total number of errors is at least 2k + 2 = k + 1;
Considering the latter condition, since c+ 1 partitions have
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at least 2 errors each. The total number of errors is at least
2k+2 = k+1. Both of the cases contradict the fact that it
is a query result.

This Lemma helps to control the growth of candidate size
when k increases. As show in experiment Figures 5(l) and
5(m), the reduction of candidate size could reach up to 2
orders of magnitude.

4.2.1 Implementation based on 1-Variants
Consider HmSearch implemented in the general framework
of Algorithm 1, where reducedHammingQuery is based on 1-
variants as signatures. Hence, we will use the indexing and
query processing methods described in Section 3.2.1 to im-
plement reducedHammingQuery. The only subtlety is that
we index each signature enhanced with its partition ID, so
that we can index signatures from different partitions in one
index without them interfering with each other.

Lemma 4 requires the ability to distinguish between the
exact-match with 1-match. We achieve this by the following
modification to the postings lists of the inverted index. The
inverted index maps a signature sig to Isig which is a list
of vectors such that sig is one of their 1-variants. Now we
propose to divide vectors in the posting lists into two parts:
ones that match sig exactly, and the others that have one
error. We denote the former set as Isig[0] and the latter
Isig[1]. This can be implemented by keeping an additional
pointer at the beginning of the postings list which points to
the starting entry of Isig[1], as shown in Figure 1. Therefore,
if a candidate is returned from Isig[0], it is an exact-match;
otherwise it is a 1-match.

Finally, we check the number of matching partitions accord-
ing to Lemma 4 in the function filter.

The complete listings of the algorithms are given in Algo-
rithms 3 to 5.

Algorithm 3: oneHammingQuery1Var(q)

1 C ← ∅;
2 for each vector ID v in Iq [0] do
3 C ← (v, 0);

4 for each vector ID v in Iq [1] do
5 C ← (v, 1);

6 return C;

Algorithm 4: HmSearch− V(Q, k, κ)

/* generate candidates */
1 CAND ←

empty hash table that maps vector ID to a list of integers;
2 partition(Q, κ);

3 for each the i-th partition Qi of the query Q do

4 for each vector ID (v, err) ∈ oneHammingQuery1Var(Qi) do
5 CAND [v].append(err);

/* filtering and then verification */
6 for each candidate v ∈ CAND do
7 if enhancedFilter(v, k) = false then

/* See Algorithm 7 for HBVerify */
8 if HBVerify(Q, v) then
9 output v;

Algorithm 5: enhancedFilter(v, k)

Output : Returns true if v is filtered (i.e., disqualified)
1 errors ← CAND [v]; /* the list of errors */;
2 if k is even then
3 if errors has less than two number then
4 if errors[0] = 1 then
5 return true;

6 else
7 if errors has less than three number then
8 if errors has only

one number or errors[0] = 1 and errors[1] = 1 then
9 return true;

10 return false;

1
1
, 1

2 v1 v2

1
1
, 2

2 v2 v1

2
1
, 1

2 v1

2
1
, 2

2 v2

1
3
, 1

4 v1 v2

1
3
, 2

4 v1

2
3
, 1

4 v1

v2

v2

Figure 1: Index for 1-Variants

Example 3. Consider N = 4, k = 2, Q = [11, 12, 23, 24]
and the following data vectors:

v1 :[11, 12, 13, 14]

v2 :[11, 22, 13, 14]

Assume the domain is { 1, 2 }. κ = ⌈ 2+3
2

⌉ = 2, and the first
partition is consisted of the first two dimension and the rest
two dimensions form the second partition. The variants and
the index built for them is shown in Figure 1.

At the beginning, CAND and C are initialized to empty. The
query is partitioned into [11, 12] and [23, 24]. Since [11, 12] is
in the index, all its postings are retrieved. v1 is in I[0].
This means Q and v1 has an exact-match [11, 12]. We de-
note this matching as (v1, 0) and send it to C . Next, v2 is
in I[1], which means Q and v2 has a 1-match on this parti-
tion, so this matching is marked as (v2, 1) and was sent to
C too. Then, in CAND, conditions of matchings are added
to each vectors belonging to C (e.g., error[0] denotes the
number of errors the first matching incurs). In this case,
we have v1.error[0] = 0 and v2.error[0] = 1. Then for
v1, v1.errors array has length 1, which is smaller than 2.
This means it has one match with the query. In addition,
v1.error[0] = 0, which means the match is an exact-match,
so it cannot be filtered and will be further verified. Next, v2
is processed. Because v2.errors array has length 1, which is
smaller than 2, it also has one match with the query. How-
ever, as v2.error[0] = 1, which means this is not an exact-
match, so it is pruned. Next, as [23, 24] has no match in the
index, the query processing finishes.

4.2.2 Implementation based on 1-deletion-Variants
The only major difference to the previous section is the
method to distinguish between exact-match and 1-match.
For the former case, we know the number of common 1-
deletion-variants in a partition p is exactly |p|, i.e., the num-
ber of dimensions in p. For the latter case, we know the
number is exactly 1. So we only need to test if the number

5



is greater than 1 to tell these two cases apart (See Algo-
rithm 6). Hence we can replace oneHammingQuery1Var by
oneHammingQuery1DelVar at line 4 of Algorithm 4 to imple-
ment HmSearch based on 1-deletion-variants.

Algorithm 6: oneHammingQuery1DelVar(q)

1 C ← empty hash table that maps vector ID to an integer;
2 for each 1-deletion-variant δ(q) of q do
3 for each vector ID v in Iδ(q) do

4 C[v]← C[v] + 1;

5 C′ ← empty list;
6 for each key v in C do
7 if C[v] > 2 then
8 C′ ← C′ ∪ (v, 0);
9 else

10 C′ ← C′ ∪ (v, 1);

11 return C′;

4.3 Hierarchical Binary Filtering and Verifi-

cation
Another improvement in our HmSearch method is a new al-
gorithm, HBVerify, that can perform additional filtering and
verification simultaneously; it is also highly optimized by
exploiting vertical layout and bit-parallelism.

Let d = ⌈log2 |Σ|⌉. We can represent each dimension value
of a vector using d bits. For a vector v, we store its dimen-
sion values in binary in a vertical format, i.e., using N bits
to store the most significant bits of all the N dimension val-
ues, and another N bits for the second most significant bits,
and so on so forth. We use the notation v(i) to denote the
array of bits consist of the i-th most significant bits of the
dimension values of vector v.

We can derive a filtering condition as follows:

Lemma 5. If H(Q, v) ≤ k, then H(Q(i), v(i)) ≤ k, ∀i.

Proof. Let H(v,Q) ≤ k. Assume the contrary, i.e.,
H(Q(i), v(i)) ≥ k, which means v(i) has at least k + 1 dif-
ferent bits with Q(i). Since each bit in v(i) belongs to a
unique dimension value in v, v has at least k + 1 different
dimension values with Q, which contradicts the fact that
H(Q, v) ≤ k.

This filter can be implemented efficiently using bit-level op-
erations exploiting the bit-parallelism offered by CPUs.

• XOR: Perform bitwise-XOR between v(i) and Q(i) and
obtain a bitmapA. This only requires ⌈N/w⌉ instructions.

• BitCount: Count the number of set bits (i.e., 1s) in the
A. This can be done using ⌈12N/w⌉ machine instructions
based on the trick at http://graphics.stanford.edu/

~seander/bithacks.html#CountBitsSetParallel.

Therefore, the filtering can be performed efficiently, exploit-
ing the bit-parallelism.

We can further strengthen the above filter by invoking it
in an accumulative fashion over our binary representation

(See Algorithm 7). In each iteration, we reuse the XOR’ed
bitmap A obtained in the last step (stored in B). We can
perform the XOR operations for the current level of bits,
and then mask off the bits that are already different in early
iterations using bitwise OR. The resulting bitmap will be
bit-counted. Therefore, the number of different bits is actu-
ally the total number of dimensions where the two vectors
are different so far. Obviously, the filtering power is much
better than applying the filter alone for the current iter-
ation. We choose to iterate from the least significant bit
to the most significant bits, to maximize the probability of
filtering (Line 3).

Another benefit of this filtering is that after we iterate over
all the d levels, the final bit count number is exactly the
Hamming distance between the two vectors. So we do not
need a separate verification stage.

Algorithm 7: HBVerify(Q,S)

1 maxlevel ← log2(|Σ|);
2 cumdiff ← ⌈N/w⌉ machine words filled

with 0x0; /* w is the size of a machine word in bits */;
3 for i = maxlevel downto 1 do
4 errs ← 0;
5 for j = 0 to ⌈N/w⌉ do
6 diff ← Q(i)[j] ⊕ v(i)[j]; /* XOR for diffs */;

7 cumdiff [j]← cumdiff [j] ∨ diff ; /* OR */;
8 errs ← errs + popcount(cumdiff [j]);

/* count set bits */;

9 if errs > k then
10 return false;

11 Output (v, errs);
12 return true;
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Figure 2: Example of Hierarchical Binary Filtering

and Verification

Example 4. Consider the vector v = { 5, 0, 3, 6 } and the
query Q = { 5, 2, 3, 5 } in vertical binary representation in
Figure 2. Let N = 4, k = 1, |Σ| = 8, and w = 4. We first
filter-and-verify the 3rd most significant bits of Q and v.
There are 1 mismatch between 1010 and 1011. The cumula-
tive difference bitmap cumdiff in Algorithm 7 is 0001. Af-
ter bit counting, the total number of errors is 1, which is no
larger than k = 1. So we move on to the 2nd most significant
bits of Q and v. diff = 0011⊕0110 = 0101. The cumdiff is
then OR’ed with the diff and produce curdiff = 0101, which
has 2 bits set. This means H(Q, v) ≥ 2 and hence we can
prune v immediately.

4.4 Complexity Analysis
We list the time and space complexities of previous and our
methods in Table 2.

5. REARRANGE DIMENSIONS
In this section, we present our dimension rearrangement
technique to handle skewed datasets.
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Algorithm Query Time Index Size

[16] (1 level part.) (k + 1) · f( N
k+1

) + vc1 (k + 1) · n

[16] (2 level part.) (k + 1)2 · f( (2k+1)N

(k+1)2
) + vc2 (k + 1)2 · n

[14] N · |Σ| · g1(
2N
k

) + vc3 N · n

HmSearch 1-var k
2
· g1(

2N
k

) + vc4 N · |Σ| · n

HmSearch 1-del-var N · g2(
2N
k
− 1) + vc5 N · n

where f(x) = max
(

1, n
|Σ|N−x

)

, g1(x) = max
(

1,
n·|Σ|·N

|Σ|N−x

)

, and

g2(x) = max
(

1, n·N
|Σ|N−x

)

, under the uniform assumption. vci

stands for the total time used for pruning and verifying the
candidates in each algorithm.

Table 2: Complexities of Empirical Hamming

Distance Query Methods

5.1 Impact of Data Skewness
Consider a partition of l dimensions with n vectors. A data
skew exists if one of the |Σ|l values occurs very frequently
(e.g., close to n times). If the corresponding partition value
of the query is exactly this frequently-occurring value, then
the majority of the vectors will become candidates. Such a
large amount of candidate will make the algorithm degener-
ate to a brute-force linear scan algorithm.

1

1

0

1

1

0

1

1

0

Q

v1

v2

Partition1

1

0

2

0

0

0

0

0

0

Partition2

 

2

3

0

0

2

0

v3

v4

0

0

0

0

0

0

Dim 1 2 3  4 5 6

1

1

0

0

0

0

0

0

0

1

1

0

1

1

0

 

2

3

0

0

0

0

0

0

2

0

 

1 5 62 3

(a) (b)

Partition1 Partition2

1

0

2

0

0

 4

Figure 3: Impact of Data Skew and Benefit of

Dimension Rearrangement

Example 5. Consider the example dataset in Figure 3(a).
N = 6 and k = 1, so κ = 2. Since all the vectors’ second
partitions are within Hamming distance of 1 with the query’s
second partition, all of them will become candidates. How-
ever, if we permute the dimensions before the partitioning as
in Figure 3(b), the only candidate is v1.

5.2 A Greedy Dimension Rearrangement Al-

gorithm
As the problem to obtain the optimal dimension rearrange-
ment is likely to be a hard problem, instead, we resort to a
bottom-up, greedy algorithm to find a reasonably good re-
arrangement for a specific κ. Assuming that we have a way
to measure the quality of a partition, the general idea of the
algorithm is:

• Initially we form κ partitions, each consisting of the“worst”
single dimensions (in terms of quality) among the remain-
ing dimensions.

• In each of the N − κ rounds, we choose a worst partition,
and add one of the remaining dimensions to this partition
such that the resulting new partition has the best possible
quality.

Now we consider how to define the “quality” of a partition.
Consider a partition D consisting of l dimensions. Since

we do not know the query’s value on this partition a pri-
ori, we choose to minimize the maximum frequency of any

values occurring in these dimensions, i.e., MaxFreq(D)
def
=

maxx∈Σl |{ vi ∈ DB | vi[D] = x }|. Minimizing MaxFreq
also contributes to minimizing the candidate size for a query
in the worst case. Let D◦{Dj } denotes the partition formed
by adding dimension Dj to D. We can choose the dimension
Dj such that it results in the smallest MaxFreq(D ◦ {Dj }).

The complexity of this greedy algorithm is O(N3 ·n). While
it could have a long running time when N is large, it only
needs to be run once for a fixed dataset. Also to reduce
its running time for large N , we run it on a sample of the
dataset. Finally, the efforts in dimension rearrangement
are worthwhile as it is shown in our experiment (See Sec-
tion 6.6).

partition1 partition2

0

0

0

0

D5

0

0

0

0

D6

0

0

0

0

D5

0

0

0

0

D6

1

0

 

2

3

 

D1

0

0

0

0

D5

0

0

0

0

D6

1

0

 

2

3

 

D1

1

0

2

0

 D3

0

2

0

0

D4

0

0

0

0

D5

0

0

0

0

D6

1

0

 

2

3

 

D1

1

0

0

0

 D2

1

0

2

0

D3

0

2

0

0

D4

0

0

0

0

D5

0

0

0

0

D6

1

0

 

2

3

 

D1

1

0

2

0

 D3

1

0

1

0

1

0

0

2

0

0

0

0

 

2

3

0

0

2

0

0

0

0

0

0

0

D1 D2 D3  D4 D5 D6

v1

v2

v3

v4

1 3 3 3 4 4

partition1 partition2

4 4 1 4

partition1 partition2

1 2

partition1 partition2

1 1

partition1 partition2

1 1

Dim

MaxFreq

Partitions

Dim

MaxFreq

Partitions

Figure 4: Dimension Rearrangement Example

Example 6. We illustrate the process of running the di-
mension rearrangement algorithm on the dataset in Exam-
ple 5 for κ = 2 in Figure 4. Initially, the MaxFreqs of the
single dimensions are first computed. We pick the worst two
to start the partitions. Then we consider the best dimen-
sion to add to partition 1 (currently only D5) such that the
resulting MaxFreq is minimized; we found D1, and this re-
sults in the MaxFreq of 1 for the new partition {D5, D1 }.
The process runs until all remaining dimensions have been
distributed to one of the partitions.

6. EXPERIMENTS
In this section, we report findings in our extensive exper-
imental study. We first compare the performance of our
proposed algorithms with three state-of-the-art methods for
Hamming distance queries. Then we evaluate our dimen-
sions rearrangement method to show its resulting perfor-
mance improvement. Finally, we analyze the scalability and
index size of our methods.

6.1 Experiment Setup
The following algorithms are used in the experiment.

• HSD, HSV are our proposed algorithms. HSD gener-
ates 1-deletion-variants as signatures. HSV generates 1-
variants as signatures. Both algorithms employ all three
techniques we proposed, including Enhanced Filter (EF),
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Hierarchical Binary Filter (HB) and Rearranging Dimen-
sions (RD). HSD-nEB and HSV-nEB are two variations
that remove EF and HB techniques from HSD and HSV,
HSD-nB and HSV-nB are another two variations that only
remove HB from HSD and HSV. HSD-nR and HSV-nR only
remove RD from HSD and HSV.

• ScanCount [13] is an index merge method that scans through
the posting list of each element of query and count the
occurrences of data IDs. We use it as a baseline method.
Note that when dealing with Hamming distance constraint
using ScanCount, 0s in each vector must also be indexed
and processed to guarantee the correctness.

• Google [16] is one of the state-of-the-art Hamming dis-
tance query algorithms and is specifically designed for
detecting near duplicate documents at Web scale. This
method is based on partitioning and exact-matching. We
also implemented a variation of Google, Google-R, which
integrates the Rearranging Dimensions (RD) technique we
proposed.

• HEngine [14] is a recently proposed Hamming distance
query processing method. It is based on partitioning and
reducing the k-query to 1-queries.

In our experiments, we select four publicly available real
datasets. They cover a wide range of data distributions and
application domains.

• Audio is extracted from the DARPA TIMIT collection1.
It contains 54,387 192-dimensional feature vectors. We
use p-stable LSH [9] to convert each feature vector into a
64 dimension integer vector.

• TREC is extracted from the TREC-9 Filtering Track Col-
lections2. Each string is a reference from the MEDLINE
database with author, title, and abstract information. We
apply the SimHash [16] to convert each string into a 64-
dimension binary vector.

• ENRON is extracted from the Enron email collection3.
We extract and concatenate the email title and body. We
employ MinHash [5] to convert each string a 64-dimension
integer vector. As MinHash selects a token in the string
as its signature, the |σ| of ENRON is large.

• PubChem is a database of chemical molecules4. We sam-
ple 1 million entries. Each entry contains a fingerprint,
which is a 881-dimension binary vector.

Statistics about the datasets are listed in Table 3.

The experiments for Audio, TREC, ENRON data were car-
ried out on a PC with Intel(R) Xeon(R) X3330 2.66GHZ
CPU and 4GB RAM. The operation system is Debian 5.0.6.
The experiments for PubChem data were carried out on
a PC with Quad-Core AMD Opteron(tm) Processor 8378
2.4GHZ CPU and 96GB RAM and the operation system is
Ubuntu/Linaro 4.6.3-1ubuntu5. All algorithms were imple-
mented in C/C++ and compiled using GCC 4.4.5 with -O3
flag. All algorithms run in in-memory mode.

1
http://www.cs.princeton.edu/cass/audio.tar.gz

2
http://trec.nist.gov/data/t9_filtering.html

3
http://www.cs.cmu.edu/~enron/

4
http://pubchem.ncbi.nlm.nih.gov/

We measured the query time and candidate size in the ex-
periments. By query time, we mean the average elapsed
time (measured in millisecond) for a query. Due to the wide
range of values, the y-axes of most figures on running time
are plotted in logarithmic scale. The candidate size we mea-
sure is the average number of data vectors that are sent to
the final verification.

Table 3: Statistics of Datasets

Data n N Generation Function |Σ|

Audio 54, 387 64 2-stable LSH 16
TREC 239, 580 64 SimHash 2
ENRON 95, 997 64 MinHash 172
PubChem 1, 000, 000 881 chemical fingerprinting 2

6.2 Hamming Similarity Query Performance
To test the query processing time of all algorithms on four
datasets, we randomly sample 1,000 vectors from each dataset
as queries. We measure the query time and show the re-
sults of five algorithms in Figures 5(a)–5(d). For Audio,
TREC and ENRON datasets, the Hamming distance thresh-
old varies from 1 to 31 (nearly 50% error rate). For the
PubChem dataset, the Hamming distance threshold varies
from 1 to 81 (nearly 10% error rate).

We observe that

• The query performance on Audio, TREC and PubChem
exhibits following patterns.

– The fastest algorithm is HSV for all Hamming distance
thresholds.

– For small threshold (less than 7), Google is better than
HSD. On the other hand, when the threshold gets
larger (than 7), HSD outperforms Google by up to 2
orders of magnitude.

– When Hamming distance threshold is 1, HSV and Google

have the similar performance, as both methods use
highly selective signatures. When Hamming distance
threshold increases, the performance of Google deteri-
orates faster than HSV. The reason is that HSV’s par-
tition length is nearly twice as long as that of Google’s
partition. Hence HSV generates much more selective
signatures and this results in HSV’s better performance.

– The slowest algorithm is always ScanCount and it is
insensitive to the Hamming distance threshold. This
is because ScanCount always näıvely goes through all
the posting lists for each dimension values of the query
and collects the number of occurrence of each vector
encountered.

• ENRON has a large alphabet size, hence HSV becomes
inapplicable. We compare HSD with other algorithms in
Figure 5(c). The trend is,

– HSD has a competative performance from middle (10)
to large (31) Hamming distance thresholds.

– When the threshold is low, for instance, up to 7, Google
outperforms HSD in most experiment cases. This is
because when the threshold is low, both Google and
HSD generate highly selective signatures. Therefore,
the advantage of longer signatures of HSD is not obvi-
ous. In the meanwhile, the overhead of HSD enumer-
ating 1-deletion variants on the query contributes to
the slowing down the query time.
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– HEngine has substantially worse performance on EN-
RON, because it needs to generate a large amount of
the query’s 1-variants and probing them against the in-
dex. This cost is proportional to the alphabet size |σ|.

• The overall trend for HSV, HSD and Google is that the
query time increases with the increase of the Hamming
distance threshold. This is reasonable, as larger thresh-
old leads to more candidates and eventually more results
which increase the computation time.

6.3 Candidate Size Analysis
We measure the candidate sizes of four algorithms on the
four datasets and show the results in Figures 5(e)–5(h).

We observe that

• Except for ScanCount, the candidate sizes of other algo-
rithms increase with the increase of the Hamming distance
threshold. Google has a larger candidate size than HSV

and HEngine. The reason is that Google’s partition length
is about half of that of HSV, HSD and HEngine.

• When the Hamming distance threshold increases, the can-
didate sizes of HSV and HSD grow much slower than other
algorithms thanks to the enhanced filtering.

• The candidate sizes of all partitioning-based methods will
reach n (i.e., all data vectors become the candidates) when
the threshold is sufficiently large. When an algorithm’s
candidate size reaches n, it is better off to use a brute-
force verification-only method, and hence this is the max-
imum error threshold the algorithm could be useful for.
For Google, this happens when the threshold is around 25
on Audio and ENRON, and when thresholds are 10 and 17
on TREC and PubChem, respectively. This phenomenon
occurs much later for both HSV and HSD than Google and
HEngine.

6.4 Query Time Fluctuation
The overall trend of the query time is that it increases when
the Hamming distance threshold increases. However, as
shown in Figure 5(i), on the micro-scale, the query time of
our HSV may fluctuate. For example, query time at k = 26
is slightly more than that at k = 27. This phenomenon is
caused by the enhanced filtering due to Lemma 4. When the
Hamming distance constraint is even, in certain conditions,
two variant matches are required to pass the filtering con-
dition. However, when the threshold increase by one, the
filtering condition may be strengthened to requiring three
matches. Although the increase of the threshold shortens
the partition length and accordingly the selectivities, the
stronger pruning condition may eventually reduces the can-
didate size substantially and hence improve the overall per-
formance.

6.5 Effect of Enhanced Filter and Hierarchi-

cal Binary Verification
We present the query time and candidate size of our al-
gorithms to exhibit the effects of Enhanced Filter and Hi-
erarchical Binary Verification. HSV denotes the algorithm
that contains both Enhanced Filter and Hierarchical Binary
Verification. HSV-nB denotes the algorithm with only En-
hanced Filter and HSV-nEB denotes the algorithm without

either technique. The query times are shown in Figures 5(j)
and 5(k), and the corresponding candidate sizes are shown
in Figures 5(l) and 5(m).

For HSV-nEB and HSV-nB, Enhanced Filter contributes sig-
nificantly to performance improvement when the threshold
is in the middle range. For example, when threshold is be-
tween 13 and 28, HSV-nB has almost one order of magnitude
faster than HSV-nEB. The reason is that at these thresholds,
the selectivity of variants is low, thus requiring two or three
matching partitions helps improve the performance dramat-
ically. The same trend also appears in Figures 5(l) and 5(m).
We can notice that the average candidate size reduction is
more significant than the reduction of running time. For ex-
ample, when the Hamming distance threshold equals to 16
on Audio data, there is a nearly 90% reduction of candidate
size with a nearly 70% reduction of running time. This is
mainly due to the overhead of performing the filtering. An-
other observation is that when the threshold is very small,
the improvement due to the Enhanced Filter is insignificant.
For example, for Enron, when the Hamming distance thresh-
old is 1, both HSV-nEB and HSV-nB have almost the same
performance. The reason is that since the threshold is very
small, the variants of HSV-nEB are long enough to have a
very high selectivity.

By comparing HSV-nB (HSD-nB) and HSV (HSD), we can
evaluate the effectiveness of Hierarchical Binary Verification.
The improvement of applying Hierarchical Binary Verifi-
cation is noticeable in both datasets, especially when the
Hamming distance threshold is not small. Generally speak-
ing, the performance gap between the traditional verification
and the Hierarchical Binary Verification enlarges with the
increase of the Hamming distance threshold. For example,
when the Hamming distance threshold is 22 for Audio data,
the performance improvement over traditional verification is
over 4 times.

6.6 Effect of Rearranging Dimensions
We study the effectiveness of rearranging dimensions in Fig-
ures 5(n)–5(q). Note that Google-R is the Google with the
dimension rearrangement technique, and HSV (HSV-nR) and
HSD (HSD-nR) are our algorithms with and without the di-
mension rearrangement technique, respectively. The follow-
ing observations can be made:

• The effect of dimension rearrangement can boost the per-
formance in most cases, especially for the PubChem data
(up to two orders of magnitude). The reason is that since
each dimension corresponds to a manually defined fea-
ture of chemical molecules, there are plenty of skews in
the PubChem dataset. In addition, it is not uncommon
that several of these skewed dimensions are consecutive
and may reside in the same partition by existing meth-
ods. This may lead to the fact that the majority of the
dataset will be retrieved as candidates.

• For the Audio and TREC datasets, the effect of dimension
rearrangement is noticeable but not significant (See Fig-
ures 5(n) and 5(o)). The reason is that the dimensions of
these datasets are generated by various independent LSH
functions, therefore, there is much less data skew in the
Audio and TREC datasets. Hence, the improvement of di-
mension rearrangement is not as remarkable as PubChem.
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(c) ENRON, Query Time (N = 64)
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(d) PubChem, Query Time (N = 881)
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(e) Audio, Candidate Size (N = 64)
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(f) TREC, Candidate Size (N = 64)
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(g) ENRON, Candidate Size (N = 64)
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(h) PubChem, Candidate Size (N = 881)
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Figure 5: Experiment Results - I
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• Although our dimension rearrangement method works in
most cases, it does not always deliver better performance
than without. For example, for the ENRON dataset, when
the threshold is between 5 and 8, Google has a better per-
formance than Google-R (see Figure 5(p)). The reason
is that under such cases, the variants already have very
good selectivites and our greedy algorithm cannot guaran-
tee the global optimality of the dimension rearrangement.

6.7 Scalability
We study the scalability of the algorithms by varying the
dataset size. We randomly sample 20% to 100% of the data
vectors from TREC as the datasets for this experiment. The
Hamming distance threshold is fixed to 7. Figure 5(r) shows
the query time ratio, which is defined as the query time of
the current dataset over the query time of the 20% sampled
dataset.

The general trend is that the query time of the four algo-
rithms all grows with the increase of the dataset size. Scan-
Count exhibits the slowest growth rate, followed by HSV.
When the dataset size increases from 20% to 100%, the
query time increases by 4.5 times for ScanCount, 5.9 times
for HSV, 8.2 times for Google and 11 times for HEngine.
This showcases the better scalability of HSV and ScanCount

to dataset size than that of Google and HEngine.

6.8 Index Size
Figures 6(a)–6(c) show the index sizes of the algorithms on
the three datasets5 with different Hamming distance thresh-
olds. In general, our HSV has a large index size. For TREC
data, when the threshold is small (k = 1), the index size
is even larger than the case where the threshold is large
(k > 25). The reason is that, for small k, a large amount of
unique signatures are generated by HSV, each of which re-
quires two pointers. Hence the total size of pointers is huge
and contributes to the large index size. The HSD and Scan-

Count have a competitive space usage on ENRON dataset,
yet for the TREC and PubChem datasets, they consume a
relatively larger index space. Note that, in some cases (e.g.,
k ≥ 25 on ENRON), HSD has the smallest index size among
all the methods. Generally speaking, Google has a relative
small index size for most cases. The HEngine’s index size in-
creases linearly with the increasing threshold, and is usually
larger than that of HSD.

7. RELATED WORK
Theoretical Studies. The Hamming distance query with
threshold k was originally known as the k-query problem.
[17] first proposed the d-query problem, which asks if there
exists a string in a dictionary (consisting of n strings) within
Hamming distance d of a given (binary) query string Q of
length m.

Different solutions are required for small d and large d. For
the special case when d = 1, there exist many efficient solu-
tions [26, 3, 4]. Among them, [4] constructs a data structure
that answers 1-query in time O(1) using space O(n logm) in
a cell probe model with word size m [4]. d-query for large
d is much harder, with few results beating the naive solu-
tion with O(md) query time. The state-of-the-art result is

5The results on the Audio dataset is similar to that of ENRON.

obtained by [8], which answers a d-query where d = O(1) in
time O(m+logd(nm)+occ) and using space O(n logd(nm)),
where occ is the number of query result.

Solutions in Chemical Informatics. Similarity queries with
a Tanimoto threshold on binary fingerprints of chemicals are
widely used in chemoinformatics applications [10, 7, 6, 19].
There exist many specialized solutions [23, 2, 18, 22, 20].
Most of the solutions are based on bounding the number
of 1-bits in the fingerprints or their partitions. [23] develops
the bound on the number of 1-bits given a query fingerprint;
and [18] further applies this idea to partitioned fingerprints.
Another 1-bit bound is developed in [2] where fingerprints
are “folded” down to shorter fingerprints via the XOR oper-
ation, and a bound of the similarity can be established on
the short fingerprints. [22] builds a method named MultiBit
Tree, which is a binary tree recursively built by choosing
a certain dimension to split the remaining fingerprints. At
query time, a depth first traversal on the tree is performed
together with pruning based on the number of 1-bits. One
of the latest methods is [20], where each fingerprint is trans-
formed into a set (as in Section 2) and inverted index is
built on the set elements. This essentially reduces the orig-
inal problem into a set overlap search problem, where the
DivideSkip method proposed in their earlier work [13] is em-
ployed for query processing.

Practical Solutions. Due to the wide range of applications
of Hamming distance queries (e.g., those mentioned in Sec-
tion 1), many practical solutions have been proposed, and
they are all based on reducing the k-query problem into
several k′-query sub-problems, where k′ < k. [15] essen-
tially indexes all the 1-variants of strings in the dictionary
to answer 1-query efficiently. To handle small k, [16, 24] di-
vide the string into k + 1 partitions such that query results
must have at least one exact match with the query in one
of the partitions. [16] also proposes methods to recursively
apply the same idea again, and this two-level partitioning
idea also appears in the PartEnum method [1]. The above
methods can only deal with very small value of k, as the
number of dimensions in each partition will be small and
this results in poor selectivities. Recent work addresses this
limitation by reducing the general problem into several 1-
query sub-problems [14, 21]. The number of partitions κ
is chosen to be ⌊k/2⌋+ 16. The difference between the two
proposals is that [14] replicates the data while [21] resorts to
indexes, which was implemented and compared with in our
experiments. We note that the approaches that reduce to
1-queries (including ours) are better than those reducing to
0-query using the two-level partitioning methods [16, 1] as
they have the similar signature length ( 2

k+2
N vs. 2k+1

(k+1)2
N),

but the latter generates much more signatures per vector
(k/2 vs. (k + 1)2); therefore, we do not compare with the
latter in our experiment.

8. CONCLUSIONS
In this paper, we propose HmSearch, an efficient Hamming
distance query algorithm that works well for a large spec-
trum of error threshold, do not have any limitation on the

6Although both papers mentioned the possibility of k′ > 1, this
will result in very large index as it is superlinear in the number
of dimensions.
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Figure 6: Experiment Results - II

domain size, and is robust against data skew. Our method
is based on a different partitioning scheme, with tightened
count filtering and a filter-and-verification technique based
on hierarchical binary representation. A greedy algorithm
to rearrange the dimensions before partitioning is also de-
veloped. We demonstrate the superior performance of our
proposed method against the previous state-of-the-art meth-
ods, using LSH and Chemical datasets under a wide range
of parameter settings.
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