
Graph Summarization for Entity Relatedness Visualization

Yukai Miao
The University of New South Wales

Australia
yukai.miao@unsw.edu.au

Jianbin Qin*
The University of New South Wales

Australia
jqin@cse.unsw.edu.au

Wei Wang
The University of New South Wales

Australia
weiw@cse.unsw.edu.au

ABSTRACT
In modern search engines, Knowledge Graphs have become a key
component for knowledge discovery. When a user searches for
an entity, the existing systems usually provide a list of related
entities, but they do not necessarily give explanations of how they
are related. However, with the help of knowledge graphs, we can
generate relatedness graphs between any pair of existing entities.
Existing methods of this problem are either graph-based or list-
based, but they all have some limitations when dealing with large
complex relatedness graphs of two related entity. In this work,
we investigate how to summarize the relatedness graphs and how
to use the summarized graphs to assistant the users to retrieve
target information. We also implemented our approach in an online
query system and performed experiments and evaluations on it.
The results show that our method produces much better result than
previous work.

CCS CONCEPTS
¥Information systems ! Information systems applications ;
Information retrieval ;

KEYWORDS
Graph Summarization; Graph Visualization; Knowledge Graph

1 INTRODUCTION
Nowadays, search engine companies like Google and Yahoo! usu-
ally provide a knowledge card about the queried Òthings" besides
the traditional list of Òblue links." For example, Figure 1 shows part
of a knowledge card provided by Google when we search for ÒEin-
stein". As we can see, some recommended people have text labels to
indicate their relationships to Einstein, but the others do not have
any descriptions about why they are related. In particular, ÒIsaac
Newton" is the top-ranked entity, but we know that he is not very
Òclose" to Albert Einstein, and their relationships are indeed hard to
explain by a single word.

However, with the help of some public knowledge graphs, e.g.
DBPedia, we can !nd some paths that connect them. Then, we use

* Corresponding Author. This research was supported by ARC DP 170103710, D2D
CRC Grants DC25002 and DC25003.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro!t or commercial advantage and that copies bear this notice and the full citation
on the !rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci!c permission and/or a
fee. Request permissions from permissions@acm.org.
SIGIR Õ17, August 07-11, 2017, Shinjuku, Tokyo, Japan
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5022-8/17/08. . .$15.00
https://doi.org/http://dx.doi.org/10.1145/3077136.3080747

the combination of these paths to represent their relationship and
visualize them to retrieve deep information.

Currently, there are two ways to do this. They are the graph-
based approach and the list-based approach. In the graph-based
approach [3, 6], all the relevant information extracted from the
knowledge base are represented as a single graph. This approach
gives users the overview of the relationship, but when the graph
goes bigger, it may be too complex for humans to navigate through
it and get some !ndings. To solve this complexity problem, they
need some !ltering methods to reduce the graph size. On the other
hand, the list-based approach [1, 2] generates a ranked list of path
patterns or subgraph patterns from the knowledge graph. This
approach directly shows the important information to the users
but it breaks the overall structure and the users cannot navigate
through the edges easily. Besides, a top-K list will eliminate the tail
information.

To overcome the limits of the previous approaches, we propose
a novel method to tackle the relatedness visualization problem.
We adopt the general framework of graph-based approach but
enhance the expressiveness of the graphs via a summarization
method. Firstly, given a pair of query entities, we use the existing
methods to extract the relatedness information from the knowledge
base. Then, we preprocess it with a simple heuristics to do a decent
graph reduction that only removes redundant information. Finally,
we use a classical model, Bisimulation, to summarize(or simplify)
the graph into a more concise form. For the summarization, we allow
the users to adjust the parameters online and generate the resulting
graph instantly. In other words, our summarization method takes a
pair of query entities, their preprocessed relatedness graph and the
usersÕ con!gurations as theinput , and computes a summarized
graph as theoutput . The advantages of this approach are

¥ Avoid the redundant information propagated from the interme-
diate entities.

¥ Keep all the non-redundant information intact.
¥ Keep the high-level structures and hide the low-level details as

user speci!ed.
¥ Visualize the summarized graph to support easy navigation.

In this work, our goal is to use summarized graphs to visualize
relatedness graphs e"ectively and e#ciently. Themain contribu-
tions of this work are

¥ This is the !rst work to apply a classic model,Bisimulation, to
summarize(or simplify) the relatedness graphs for visualization.

¥ We design a graph summarization approach to help users inves-
tigate a complex relatedness graph.

2 RELATED WORK
We !rstly introduce two major categories of approaches for this
problem, and then give some background about Bisimulation.

!"#$%&'()(*$+"& ,*-($!./.'0123&4565)%&27113&89123&!":;<5=53&>#=?#3&@*-*;

11A1

Figure 1: Related Entities suggested by Google when search-
ing for ÒAlbert Einstein"

Graph-based: RelFinder [3] is one of the early work on relat-
edness extraction and visualization. It is a graph-based method to
visualize the relatedness graph. To handle large graph, RelFinder
requires !ne-tunned !ltering predicates. RECAP [6] is one of the
state-of-art relatedness extraction and visualization system. It uses
statistical path ranking methods to generate top related paths. Its
!nal relatedness graph is the combination of the top paths.

List-based: REX [2] is one of the early work on list-based relat-
edness extraction. It enumerates graph patterns with graph-level
or path-level enumeration approaches and then directly performs
ranking on these graph patterns. Explass [1] is another list-based
system for relatedness queries. It utilizes the type hierarchy of nodes
and edges to generate di"erent levels of patterns and transforms
the top-k ranking problem into an optimization problem.

Bisimulation: In terms of Bisimulation, [5] gives anO(m log(n))
time complexity algorithm to compute the coarsest stable partition
in a graph withn nodes andm edges. We adapt this algorithm for
our graph simpli!cation task. Besides, [4] shows us the applica-
tion of bisimulation for building indices and querying e#ciently in
XML.

3 PRELIMINARY
3.1 Knowledge Graph
A Knowledge Graph (or KG) is a graph that consists of entities
(e.g. persons, locations, and organizations) as nodes and relations
between pairs of entities (e.g. Òspouse", ÒbornIn", and ÒmemberOf")
as edges1. A knowledge graph can be formally de!ned as below.

De�nition 3.1 (Knowledge Graph). Knowledge GraphG is a triple
G := (V ,E, �) whereV is the set of nodes,E is the set of edges, and
� := E ! L is the edge labeling function that gives each edge a
labelr 2 R.

Usually, given an edges
r�! o, we calls, r ando as Òsubject",

Òrelation type" and Òobject", respectively.

3.2 Relatedness Explanation
De�nition 3.2 (Relatedness Explanation). Given a knowledge graph

G and a pair of query entities(�s,�t), the Relatedness Explanation
is a triple (�s,�t ,Ge), whereGe is a subgraph ofG.

1The edges can be directed or undirected, but we may treat each undirected edge as
two directed edges in opposite directions, then the whole graph becomes a directed
graph.

Within a relatedness explanation, an edge isnecessaryif and
only if it belongs to a simple path2 between the source entity�s
and the target entity�t . If a relatedness explanation contains only
necessary edges, then it becomes anecessary relatedness expla-
nation .

For example, in Figure 2, there is a relatedness explanation of
query (S,T), in which all edges exceptr are necessary edges. So, if
we remover andC (becauseC is disconnected from the explana-
tion after r is removed), then the remaining subgraph becomes a
necessary relatedness explanation.

�6 �$ �% �7

�&

�P �Q �S

�U

�T

Figure 2: a relatedness explanation example

It is evident that a necessary relatedness explanation is more
compact than the full explanation and brings less cost to handle, so
here we only deal with necessary explanations. For simplicity, if not
explicitly pointed out, what we mean by a Òrelatedness graph" in the
remaining sections is always a necessary relatedness explanation
graph.

3.3 Graph Partitioning with Bisimulation
A bisimulation is a binary relation between nodes in a graph, asso-
ciating nodes that Òbehave" in the same way. Its formal de!nition
is as follows.

De�nition 3.3 (Bisimulation). Let G = {V ,E} be a graph with
node setV and edge setE. a relationR onG is abisimulation if
and only if the following holds: wheneverxR�, x,� 2 V,

If x ! x 0, then there is some� ! �0 such thatx 0R�0,

If � ! �0, then there is somex ! x 0 such thatx 0R�0.
Here,x ! � means there is an edge from nodex to � in edge

setE. Additionally,x is bisimilar to � if and only if there exists a
bisimulationR s.t.xR�.

Intuitively, if R is a bisimulation and we havexR�, thenx sim-
ulates� and� simulatesx. In other words,x and� have similar
behaviors in the graph.

Furthermore, it is evident that a bisimulation is an equivalence
relation. Hence, it provides apartition of the node set into equiva-
lence classes and all the nodes in an equivalence class are pair-wise
bisimilar to each other.

Let P = {B1,B2 · · · ,Bn } be an arbitraryn-block partition of
V, i.e.81i nBi ! ;, 81i < j nBi \ Bj = ; and[n

i=1Bi = V, the
Maximal Bisimulation problem is to get the coarsest re!nement3

of P, such that every pair of nodes in the same block is bisimilar.

2Because the direction of each edge only represents the semantic meaning of that
relation, regardless of which direction it is, the two nodes connected by this edge are
related. So we do not care about directions when searching for paths.
3Informally, a re!nement of a partitionP is a further partition ofP, where some blocks
of P split into smaller blocks. IfQ is a re!nement ofP, thenP is coarser thanQ. Due
to the page limit, please !nd some related materials for the more details.

!"#$%&'()(*$+"& ,*-($!./.'0123&4565)%&27113&89123&!":;<5=53&>#=?#3&@*-*;

11A8

4 PREPROCESSING
The initial step of the relatedness explanation is to extract a sub-
graph that connects two query entities. We borrow the previous
methods that transform a relatedness query into a path enumera-
tion problem. It searches for all the simple paths, with a maximal
length restriction4, that start from one of the query entities and
terminate at the other one.

Among the paths we enumerated, some paths can be redundant
and we want to remove them. Given a set of candidate pathsH, a
pathh 2 H is redundant if it contains a sub-paths such that if we
cut outs from h and connect the remaining two parts, the resulting
pathh0 is also a candidate inH. For example, given a pair of query
entities (! s, ! t), we get two simple paths,h1 andh2 as below.

h1 = ! s � · · · � ! i � ! i +1 � · · · � ! t
h2 = ! s � · · · � ! i � u1 � · · · � uy � ! i +1 � · · · � ! t

The only di!erence betweenh1 andh2 is the middle part. Since
! i and! i +1 are directly connect inh1, we "nd that sub-paths =
u1 � · · · � uy is redundant as it also connects! i and! i +1. So, we
remove pathh2 to keep the graph concise.

In the "nal step, the paths are merged into a relatedness graph,
and we will use it as the initial graph of our summarization method.

5 GRAPH SUMMARIZATION
After we extract and preprocess a relatedness graph, we need a
method to summarize it and then visualize it. Our general idea is
to use the maximal bisimulation to partition the given graph and
generate a summarized graph using the partitioned blocks. The
maximal bisimulation problem is well-de"ned and it has a "xed
result given an input graph and its initial partition. However, the
users may have di!erent focuses on the graph in di!erent scenarios,
so we need to take the user-de"ned con"gurations as the parameters
in the computation. In the following parts, we will show how to
adapt the bisimulation to our problem and how to support two kinds
of user-de"ned predicates, i.e. entity type predicates and relation
type predicates, to generate a properly summarized graph.5

Adapt Bisimulation to Relatedness Graphs.The original de"nition
of bisimulation only deals with non-labeled graphs, but a related-
ness graph is a labeled graph, where the labels are relation types.
To take these relation types into account, we extend bisimulation
de"nition below.

If x
p
�! x 0, then there is some"

p
�! " 0 such thatx 0R" 0, (1)

If "
q
�! " 0, then there is somex

q
�! x 0 such thatx 0R" 0.

Support Entity Type Predicate.In a speci"c task, for example,
we may focus on only ÒpersonsÓ and ÒorganizationsÓ and we do
not care about the other types of entities. Thus, we expect that
these types of entities are distinguished from other types of entities
in the summarized graph. To support summarization with such
requirement, we have to change the initial partitionP. We "rst start
by divide the initial partition into three sets, i.e.Bperson, Bor� and
Bothers. Then, we useP = {{! s}, {! t },Bperson,Bor� ,Bothers} as

4In most cases, the maximal path length is set to be 3.
5A big di!erent between our method and other existing methods is that we use types
to a!ect the partition rather than "ltering out some edges and nodes

the initial partition of the bisimulation. According to the de"nition
of the maximal bisimulation problem, given this initial partition
P, the "nal partition must keep the selected types of entities, i.e.
Òpersons" and Òorganizations", separated from all the other types of
entities.

Support Relation Type Predicates.Similarly, we may be interested
in only some of the relation types for a particular task, so we want
to respect the de"nition of bisimulation only on these edges. To
support this, we create an Òactivated edge set"Ra and use it as
one of the parameters of bisimulation. For example, if the user se-
lects relation typeBirthDate as the predicate. All edges with label
BirthDate will be added intoRa. Then the modi"ed bisimulation
algorithms based on Formula (1) will compute the maximal bisim-
ulation considering only edges inRa. Based on the de"nition of
bisimulation, any pairs of nodes which are not bisimilar in terms
of edges inRa must be partitioned into the di!erent partitions.6

Example.We show an example of how the initial graph is simpli-
"ed in the "gure 3. In this example, the two query entities are ÒFrank
HerbertÓ and ÒBrian HerbertÓ. "gure 3(a) shows an initial related-
ness graph generated from the methods in Section 4. Figure 3(b)
shows the summarized graph after we apply maximal bisimula-
tion without de"ning any semantic predicates on both entity type
and relation type. However, this graph is too concise to extract
any target information. In "gure 3(c), we show a meaningful sum-
marization graph with entity type predicate ÒwriterÓ and relation
type predicate ÒauthorÓ. We can use this graph to retrieve some
information such as ÒWhich book was co-authored by them?Ó.

6 EVALUATION
6.1 Evaluation Setup
To evaluate our proposed approach, we implemented a system called
REVS. We conducted a user-centered evaluation to compare our
system with other similar systems for relatedness extraction and
visualization. We used RelFinder [3] as a representative of graph-
based approach and Explass [1] as a representative of list-based
approach. For the evaluation, we created 20 questions involving
10 pairs of entities and invited 15 persons to use these systems to
"nd the answers. These questions are based on 2 one-hop relations,
12 two-hops relations and 6 three-hops relations.7 We collect the
answers, time to complete each answer and usersÕ rating to each
system for each question.

Before the evaluation starts, we did a small experiment on the
e!ect of summarization by ourselves. For each question, we tried
to "nd the best con"guration that produces the simplest graph and
also exposes the answer8, and we recorded the amount of nodesN
and predicatesE of the graph in each phase.

6.2 Evaluation Results and Analysis
E!ect of Summarization.The amount of nodes and edges in each

phase for some questions are shown in Table 1. In this table, each
6With this design, if we select no relation type predicates, the bisimulation will ignore
all the edge labels and will be the same as the original de"nition.
7The source code and experiment resources are available at https://github.com/
DBWangGroupUNSW/revs.
8Typically, we just enable only the predicates and entity types that exist in the
questions.

!"#$%&'()(*$+"& ,*-($!./.'0123&4565)%&27113&89123&!":;<5=53&>#=?#3&@*-*;

11AB

(a) Initial Relatedness Graph (b) Bisimulation without predicates (c) Bisimulation with selected predicates

Figure 3: Graph Simpli!cation With Bisimulation

h N0 E0 N1 E1 N2 E2 SN SE
Q1 1 13 37 10 17 5 10 0.62 0.73
Q7 1 72 229 60 164 6 60 0.92 0.74
Q3 2 34 112 23 58 5 34 0.85 0.70
Q5 2 78 201 38 89 5 49 0.94 0.76
Q9 2 44 108 44 107 6 17 0.86 0.84
Q6 3 72 229 60 164 8 56 0.89 0.76
Q11 3 60 164 22 44 6 29 0.90 0.82
Q18 3 113 313 95 252 10 35 0.91 0.89

Table 1: E"ect of summarization (for part of the questions)

row corresponds to a question. For each question,h is the number of
hops of relation involved in the question,N0 andE0 are numbers of
nodes and edges of the original graph extracted from the knowledge
graph,N1 andE1 are counted after the preprocessing,N2 andE2 are
counted after we use the bisimulation under our own con!gurations,
and !nally, SN andSE show their proportional decrease from the
original graph to the !nal simpli!ed graph.

As we can see, the preprocessing does reduce the initial graph
complexity, but its performance depends on the internal structures
of the original graphs. For example,Q11 gets the most bene!t from
the preprocessing step because many sub-paths that connect some
pairs of Òpopular" neighboring entities are redundant and their di-
rect relations have already provided enough information. However,
Q9 gets almost no help from it because nearly all the internal rela-
tions do not contain such redundancy. Nevertheless, as shown in
the last two columns, after the bisimulation is applied, the resulting
graph are heavily reduced. For all the 20 questions, no more than
10 nodes are required to show the answers.

1-hop 2-hops 3-hops
CREV S 0.750 0.708 0.583

CRel F inder 0.500 0.333 0.083
CExplass 0.250 0.667 0.333

SREV S 0.459 0.660 0.509
SRel F inder 0.289 0.252 0.065
SExplass 0.236 0.554 0.244

Table 2: Results of the user study. C? is the correctness rate
and S? is the average score.

User Study.The results of the evaluation are shown in Table 2.
Firstly, we have the correctness ratesC of each system for dif-
ferent groups of questions. Secondly, we compute the scoresS =
A!" (r / log (1+ t)) for each system, wherer is usersÕ rating andt
is the time cost, to measure how well they help the users !nd the
answers. If a participant gives a wrong answer to a question, we
treat this as a 0-rating case.

In general, REVS performs best in all the question groups. Both
REVS and Explass beat RelFinder because they provide summarized
information. Explass looks bad at handling 1-hop relations because
it always put this kind of relations into the Òother paths" list. For
multi-hop relations, REVS has better performance than Explass
because REVS provides a global view of all the relatedness infor-
mation and it gives users a direct impression of where the answer
could be.

7 LIMITATION & FUTURE WORK
In this work, we apply Bisimulation to summarize the relatedness
explanations and visualize them to help users retrieve the target
information. Due to the lack of reliable benchmark baselines, we
designed our own user-centered analysis. We will do further study
on the e"ectiveness of this method and get more insights about its
strengths and weaknesses.

REFERENCES
[1] Gong Cheng, Yanan Zhang, and Yuzhong Qu. 2014. Explass: exploring associa-

tions between entities via top-K ontological patterns and facets. InInternational
Semantic Web Conference. Springer, 422Ð437.

[2] Lujun Fang, Anish Das Sarma, Cong Yu, and Philip Bohannon. 2011. Rex: ex-
plaining relationships between entity pairs.Proceedings of the VLDB Endowment
5, 3 (2011), 241Ð252.

[3] Philipp Heim, Sebastian Hellmann, Jens Lehmann, Ste"en Lohmann, and Timo
Stegemann. 2009. RelFinder: Revealing relationships in RDF knowledge bases. In
International Conference on Semantic and Digital Media Technologies. Springer,
182Ð187.

[4] Tova Milo and Dan Suciu. 1999. Index structures for path expressions. InInterna-
tional Conference on Database Theory. Springer, 277Ð295.

[5] Robert Paige and Robert E Tarjan. 1987. Three partition re!nement algorithms.
SIAM J. Comput.16, 6 (1987), 973Ð989.

[6] Giuseppe Pirr˜ and Alfredo Cuzzocrea. 2016. RECAP: Building Relatedness
Explanations on the Web. InProceedings of the 25th International Conference
Companion on World Wide Web. International World Wide Web Conferences
Steering Committee, 235Ð238.

!"#$%&'()(*$+"& ,*-($!./.'0123&4565)%&27113&89123&!":;<5=53&>#=?#3&@*-*;

11AB

